Cubic threefolds and abelian varieties of dimension five. II

نویسنده

  • Sebastian Casalaina-Martin
چکیده

This paper extends joint work with R. Friedman to show that the closure of the locus of intermediate Jacobians of smooth cubic threefolds, in the moduli space of principally polarized abelian varieties (ppavs) of dimension five, is an irreducible component of the locus of ppavs whose theta divisor has a point of multiplicity three or more. This paper also gives a sharp bound on the multiplicity of a point on the theta divisor of an indecomposable ppav of dimension less than or equal to five; for dimensions four and five, this improves the bound due to J. Kollár, R. Smith-R. Varley, and L. Ein-R. Lazarsfeld.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic Threefolds and Abelian Varieties of Dimension Five

Cubic threefolds have been studied in algebraic geometry since classical times. In [5], Clemens and Griffiths proved that the intermediate Jacobian JX of a smooth cubic threefold is not isomorphic as a principally polarized abelian variety to a product of Jacobians of curves, which implies the irrationality of X. They also established the Torelli theorem for cubic threefolds: the principally po...

متن کامل

Prym varieties and the Schottky problem for cubic threefolds

A theorem of Mumford’s states that for a smooth cubic threefold X, the intermediate Jacobian JX is a principally polarized abelian variety of dimension 5 whose theta divisor has a unique singular point, which has multiplicity three. This talk describes joint work with R. Friedman, in which we prove a converse: if A is a principally polarized abelian variety of dimension 5 whose theta divisor ha...

متن کامل

1 1 M ay 2 00 4 Singularities of the Prym Theta Divisor

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric interpretation of the singularities of the theta divisor in terms of special linear series on the curve. This paper proves an analogous theorem for Prym varieties. Applications of this theorem to cubic threefolds, and Prym varieties of dimension five, are also considered.

متن کامل

S ep 2 00 8 Singularities of the Prym Theta Divisor Sebastian

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric interpretation of the singularities of the theta divisor in terms of special linear series on the curve. This paper proves an analogous theorem for Prym varieties. Applications of this theorem to cubic threefolds, and Prym varieties of dimension five, are also considered.

متن کامل

Arithmetic Torelli Maps for Cubic Surfaces and Threefolds

It has long been known that to a complex cubic surface or threefold one can canonically associate a principally polarized abelian variety. We give a construction which works for cubics over an arithmetic base, and in particular identifies the moduli space of cubic surfaces with an open substack of a certain moduli space of abelian varieties. This answers, away from the prime 2, an old question ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008